Loss-of-function variants of SCN8A in intellectual disability without seizures
نویسندگان
چکیده
OBJECTIVE To determine the functional effect of SCN8A missense mutations in 2 children with intellectual disability and developmental delay but no seizures. METHODS Genomic DNA was analyzed by next-generation sequencing. SCN8A variants were introduced into the Nav1.6 complementary DNA by site-directed mutagenesis. Channel activity was measured electrophysiologically in transfected ND7/23 cells. The stability of the mutant channels was assessed by Western blot. RESULTS Both children were heterozygous for novel missense variants that altered conserved residues in transmembrane segments of Nav1.6, p.Gly964Arg in D2S6 and p.Glu1218Lys in D3S1. Both altered amino acids are evolutionarily conserved in vertebrate and invertebrate channels and are predicted to be deleterious. Neither was observed in the general population. Both variants completely prevented the generation of sodium currents in transfected cells. The abundance of Nav1.6 protein was reduced by the Glu1218Lys substitution. CONCLUSIONS Haploinsufficiency of SCN8A is associated with cognitive impairment. These observations extend the phenotypic spectrum of SCN8A mutations beyond their established role in epileptic encephalopathy (OMIM#614558) and other seizure disorders. SCN8A should be considered as a candidate gene for intellectual disability, regardless of seizure status.
منابع مشابه
De novo gain-of-function and loss-of-function mutations of SCN8A in patients with intellectual disabilities and epilepsy
BACKGROUND Mutations of SCN8A encoding the neuronal voltage-gated sodium channel NaV1.6 are associated with early-infantile epileptic encephalopathy type 13 (EIEE13) and intellectual disability. Using clinical exome sequencing, we have detected three novel de novo SCN8A mutations in patients with intellectual disabilities, and variable clinical features including seizures in two patients. To de...
متن کاملComplex SCN8A DNA-abnormalities in an individual with therapy resistant absence epilepsy.
BACKGROUND De novo SCN8A missense mutations have been identified as a rare dominant cause of epileptic encephalopathy. We described a person with epileptic encephalopathy associated with a mosaic deletion of the SCN8A gene. METHODS Array comparative genome hybridization was used to identify chromosomal abnormalities. Next Generation Sequencing was used to screen for variants in known and cand...
متن کاملThe phenotypic spectrum of SCN8A encephalopathy.
OBJECTIVE SCN8A encodes the sodium channel voltage-gated α8-subunit (Nav1.6). SCN8A mutations have recently been associated with epilepsy and neurodevelopmental disorders. We aimed to delineate the phenotype associated with SCN8A mutations. METHODS We used high-throughput sequence analysis of the SCN8A gene in 683 patients with a range of epileptic encephalopathies. In addition, we ascertaine...
متن کاملSodium channel SCN8A (Nav1.6): properties and de novo mutations in epileptic encephalopathy and intellectual disability
The sodium channel Nav1.6, encoded by the gene SCN8A, is one of the major voltage-gated channels in human brain. The sequences of sodium channels have been highly conserved during evolution, and minor changes in biophysical properties can have a major impact in vivo. Insight into the role of Nav1.6 has come from analysis of spontaneous and induced mutations of mouse Scn8a during the past 18 yea...
متن کاملProtein structure and phenotypic analysis of pathogenic and population missense variants in STXBP1
BACKGROUND Syntaxin-binding protein 1, encoded by STXBP1, is highly expressed in the brain and involved in fusing synaptic vesicles with the plasma membrane. Studies have shown that pathogenic loss-of-function variants in this gene result in various types of epilepsies, mostly beginning early in life. We were interested to model pathogenic missense variants on the protein structure to investiga...
متن کامل